
52 The Delphi Magazine Issue 52

Serving Up
The Registry
by David Baer

Although working on a large,
multi-year, development pro-

ject (as I do) can be rewarding in
many ways, there’s a downside as
well. There are a number of
common practices which are often
second nature to developers who
produce small applications with
some frequency. But when one
rarely engages in such activities,
it’s not unusual to struggle a bit
with tasks other developers could
do almost in their sleep.

One such activity (at least for
me) is programming registry
access. Every time I’ve needed to
do this, in the process of writing
some small utility function that
wasn’t integrated into the main
application, I’ve had to hunt down
the last bit of code I wrote (usually
six or more months earlier) to
recall how it was done. It occurred
to me that this area could use some
automation. Of course, I could
have done what many would do:
fire up the browser and check out
Torry’s or the Delphi Super Page to
see what other solutions might be
available. But miss an opportunity
to build a new component?
Where’s the fun in that?

No, it was time to engage in the
agreeable pastime of component
creation. What follows is a presen-
tation of that component: what it
does and how it was built. There
will be little new information for
seasoned component builders
here, but you might just want to
stick around for the first part. You
may decide that TRegValet is a
rather useful little tool to have in
your toolkit.

Amongst Our Weaponry
The initial idea was quite simple. I
wanted something to allow the def-
inition of a registry key, plus a set
of value names and default value
settings for them at design-time. I
wanted these to be created the first

time the program was executed
and automatically stored at pro-
gram termination. I wanted to have
them loaded automatically during
subsequent executions, and I
wanted read/write access to the
values to be almost as easy as
accessing form properties. So far,
so good.

By the way, I don’t mean to dis-
miss Delphi’s TRegistry class as
inadequate. It’s powerful and ele-
gantly wraps some slightly
ungainly API interfaces. But my
needs are normally much simpler.
Most small applications or utilities
need only to store a few values
(and always string type values) in
one place, usually somewhere
under HKEY_CURRENT_USER\Software.
Furthermore, the registry access
required by such programs is
rarely in a performance-critical
section of code. We don’t need a
super-optimized solution in most
cases.

As always, having sat down at
the drawing board, a few additional
features began to suggest them-
selves. The first had to do with one
very commonly used bit of infor-
mation kept for the next time the
program is launched: initial form
placement and size. Given the fre-
quency with which this sort of
thing is useful, it would be nice to
provide an especially easy-to-use
service to handle it.

Another routine commission of
the registry is storing file history
lists. Here too, facilities tailored to
serve this common requirement
would be of benefit. This usage
goes beyond typical operations
(insert, find, etc) of a string list.
We’ll see shortly how this was
addressed.

Of course, the first thing to do
was resolve perhaps the most criti-
cal design decision a component
builder faces. What class to
descend from, maybe? No. I’m

talking about what graphic to use
for the component. After all, it’s
your work mounted for display on
the component palette like some
painting in the Tate Gallery. You
want to draw potential users in,
not have them skip over your bril-
liant creation because it’s got
some vapid image on it.

So, I thought of something like a
reduced image of the highly recog-
nizable Microsoft registry icon,
placed on a platter being offered
by some formally attired serving
person. ‘After all, how hard could
that be?’, I naively muttered (a
sure-fire curse if there ever was
one). Two hours after opening the
image editor, I had to console
myself with the thought that
maybe I’m not much of an artist,
but then, when was the last time
David Hockney had to write a piece
of software?

Will That Be All, Sir?
Determining the best class to
descend from was easy. This is a
non-visual component, and the use
of TComponent as the base class is
just fine. Defining the necessary
properties wasn’t much more diffi-
cult. Naturally, we’ll inherit the
Name and (oft-abused) Tag proper-
ties. We need just three more. The
first is a string property Path. I
decided to hard code HKCU (ie
HKEY_CURRENT_USER) as the major
registry key, so Path specifies the
location within HKCU. To give the
component user some initial direc-
tion, I initialize the value of this
property to \Software\ ACompany\
AnApp.

The next property is the main
one: Items. This is a collection, the
members of which define the regis-
try value names, and either an
optional default value or a maxi-
mum occurence count. The intent
is to allow the component user to
define a registry value as either a
single value item or a list.

If a single value item is used, a
default value may be specified.
The first time the program is run,
this value will be available to the
client program, and it will be
stored in the registry when execu-
tion terminates (perhaps as modi-
fied by the program during

December 1999 The Delphi Magazine 53

execution). Access to values in the
application code is done via a
public property, Values, which is
accessed (for both read and write)
using a parameter containing the
item’s name.

Alternatively, an item may be
defined as a list by specifying a
maximum occurrence count (more
than 1). In this implementation, a
list item may not be given a default
value (I don’t believe this would be
that useful in most cases). List item
values are accessed via the prop-
erty IndexedValues, which takes a
name and an index parameter.
Another read-only property, Count,
takes a name parameter and gives
the number of items in the list.

TRegValet is fairly forgiving with
respect to non-list items. If the
client code requests a value for a
non-existent item, it returns an
empty string. If the client code
assigns a value to a non-existent
item, the component adds it (and
stores it in the registry at the end of
program execution).

List items, on the other hand, get
a bit more scrutiny. New list items
may not be defined on the fly. They
must have been identified as such
in the designer. Attempting to
access a list item as a non-list, or
vice versa, will trigger an
exception.

Listing 1 shows the declaration
of TRegValet along with the
TCollectionItem and TCollection
derivative classes it uses (all of the
code for both the component and
the demo program can be found on
this issue’s accompanying disk).
For a quick scan, just pay attention
to the public and published
properties. TRegValet has one
peculiar (but probably not signifi-
cant) quality. The published
properties are of use only at
design-time. All the important
runtime information is accessed
via the public properties.

So far, I’ve described the proper-
ties of the component, but not any
methods. Most of these (the public
methods) supply support for list
item manipulation. We’ll discuss
these in the context of the example

application using TRegValet that
follows.

Proof In The Pudding
To demonstrate the component in
action, I’ve spruced up a simple
hex viewer program I had lying
around. The program takes a file
and displays it in a rich edit con-
trol, each line being formatted to
include the hex offset, the hex dis-
play values and the printable
values. I added options to allow
the user to specify a display of 16
or 32 characters per line and to
specify three relative font sizes.
These settings will be retained
between program executions in
the registry, which of course is the
point of this exercise. In addition,
the client form is made to first
appear in the same screen location
and the same size as it was when
last terminated.

Finally, I provided for the reten-
tion of a file history to be pre-
sented under the File menu item,
offering the ability to reopen one of
the last ten files opened in the
viewer. Figure 1 shows the viewer

ERegValetError = class(Exception);
TRegValetItem = class(TCollectionItem)
private
FName: String;
FDefaultValue: String;
FMaxOccurs: Integer;

protected
procedure SetDefaultValue(const Value: String);
procedure SetName(const Name: String);
procedure SetMaxOccurs(Value: Integer);

public
constructor Create(Collection: TCollection); override;
procedure Assign(Source: TPersistent); override;

published
property DefaultValue: String read FDefaultValue
write SetDefaultValue;

property MaxOccurs: Integer read FMaxOccurs
write SetMaxOccurs default 1;

property Name: String read FName write SetName;
end;
TRegValetItems = class(TCollection)
private
FOwner: TPersistent;

protected
function GetItem(Index: Integer): TRegValetItem;
procedure SetItem(Index: Integer; Item: TRegValetItem);
function GetOwner: TPersistent; override;

public
constructor Create(Owner: TPersistent);
function Add: TRegValetItem;

public
property Items[Index: Integer]: TRegValetItem
read GetItem write SetItem; default;

end;
TRegValet = class(TComponent)
private
FEasyRegItems: TRegValetItems;
FListDelim: String;
FPath: String;
FSuppressSave: Boolean;
Names: TStringList;
NonIndexedValues: TStringList;
function GetCount(const Name: String): Integer;
function GetIndexedListRef(const Name: String):
TStringList;

function GetIndexedValue(const Name: String; Index:
Integer): String;

function GetValue(const Name: String): String;
function ItemIsIndexed(const Name: String): Boolean;

procedure SetIndexedValue(const Name: String;
Index: Integer; const Value: String);

procedure SetListDelim(const Value: String);
procedure SetValue(const Name: String; const Value:
String);

procedure StoreIndexedItem(const Name: String; Value:
String);

procedure StoreItemFromReg(const Name: String; const
Value: String);

procedure StoreNonIndexedItem(const Name: String;
const Value: String);

protected
procedure Loaded; override;
procedure MergeDefaults;
procedure ReadRegistry;
procedure WriteRegistry;

public
constructor Create(AOwner: TComponent); override;
destructor Destroy; override;
procedure DeleteIndexedValue(
const Name: String; Index: Integer); overload;

procedure DeleteIndexedValue(const Name: String;
const Value: String); overload;

function IndexOf(const Name: String; const Value: String):
Integer;

procedure Initialize;
procedure InsertIndexedValue(const Name: String;
BeforeIndex: Integer; const Value: String);

procedure MoveIndexedValueToFront(const Name: String;
const Value: String); overload;

procedure MoveIndexedValueToFront(const Name: String;
Index: Integer); overload;

procedure RestoreFormBounds;
procedure SaveFormBounds;

public
property Count[const Name: String]: Integer read GetCount;
property SuppressSave: Boolean read FSuppressSave
write FSuppressSave;

property IndexedValues[const Name: String; Index:
Integer]: String
read GetIndexedValue write SetIndexedValue;

property Values[const Name: String]: String read GetValue
write SetValue; default;

published
property Items: TRegValetItems read FEasyRegItems
write FEasyRegItems;

property Path: String read FPath write FPath;
property ListDelim: String read FListDelim
write SetListDelim;

end;

➤ Listing 1

54 The Delphi Magazine Issue 52

form with the File menu item
opened.

The form’s TRegValet compo-
nent, named rvJeeves, has three
items defined: one named FontSize
has a default value of 10, one
named CharsPerLine has a default
value of 16, and one named
FileHistory is a list item having a
maximum occurrence value of 10.
The initial form placement and
sizing doesn’t require an item, as
we shall see shortly.

Listing 2 contains the relevant
pieces of code from the viewer pro-
gram, illustrating the component’s
use. Note that no code is needed to
retrieve values from the registry at
program startup or to return
values to it at termination. The
component performs both of these
services automatically.

Let’s begin with the form place-
ment requirements. To accom-
plish this, we just need two method
calls. The program may issue a call
to RestoreFormBounds from Form-
Show, and a call to SaveFormBounds
from FormClose. That’s all there is
to it.

The form’s method Initialize-
FromRegistry also shows how the
registry settings for font size and
characters per line are obtained.
The component’s Values property
is the default property, so
rvJeeves[CHARS_PER_LINE] in the
example code refers to that named
item. Modifying values is just as
straightforward. The form method
FontSizeClick shows how a change
to this value is communicated to
the component.

Lastly, let’s see the file history
list in action. The form method
SetFileMenuItems is executed when
the File menu item is clicked. The
code picks up
the count of
items in the his-
tory list, and
initializes menu
item Caption and
Visible proper-
ties with infor-
mation from the
list.

Clicking one of
the file names in
this menu gets
us into the
LoadFile form

method. Here we see that a failed
attempt will cause the file to be
removed from the history list:

rvJeeves.DeleteIndexedValue(
FILE_HISTORY, FileName)

A successful attempt will cause it
to be moved to the front of the list:

rvJeeves.MoveIndexedValueToFront(
FILE_HISTORY, CurrFile)

This move-to-front operation is
pretty non-judgmental. If the name

➤ Figure 1

const
SMALL_FONT_SIZE = 8;
NORMAL_FONT_SIZE = 10;
LARGE_FONT_SIZE = 12;
FILE_HISTORY = 'FileHistory';
FONT_SIZE = 'FontSize';
CHARS_PER_LINE = 'CharsPerLine';

procedure TfrmHexViewer.FormClose(Sender: TObject;
var Action: TCloseAction);

begin
rvJeeves.SaveFormBounds;

end;
procedure TfrmHexViewer.FormShow(Sender: TObject);
begin
InitializeFromRegistry;
SetMenuItemChecks;
reData.Font.Size := FontSize;

end;
procedure TfrmHexViewer.InitializeFromRegistry;
var Size: String;
begin
rvJeeves.RestoreFormBounds;
CharsPerLine := 16;
if rvJeeves[CHARS_PER_LINE] = '32' then
CharsPerLine := 32;

Size := rvJeeves[FONT_SIZE];
if Size = '' then
Size := IntToStr(NORMAL_FONT_SIZE);

FontSize := StrToInt(Size);
end;
procedure TfrmHexViewer.FontSizeClick(Sender: TObject);
begin
if Sender = miSmallFont then
FontSize := SMALL_FONT_SIZE

else if Sender = miNormalFont then
FontSize := NORMAL_FONT_SIZE

else if Sender = miLargeFont then
FontSize := LARGE_FONT_SIZE;

rvJeeves[FONT_SIZE] := IntToStr(FontSize);
SetMenuItemChecks;
reData.Font.Size := FontSize;

end;
procedure TfrmHexViewer.SetFileMenuItems(Sender: TObject);
var
Cnt: Integer;

procedure SetMenuItem(Index: Integer; Item: TMenuItem);
begin
Item.Visible := (Index < Cnt);
if Index < Cnt then begin
Item.Caption :=
rvJeeves.IndexedValues[FILE_HISTORY, Index];

if Item.Caption = CurrFile then
Item.Visible := False;

end;
end;

begin
Cnt := rvJeeves.Count[FILE_HISTORY];
SetMenuItem(0, miFile0);
SetMenuItem(1, miFile1);
SetMenuItem(2, miFile2);
SetMenuItem(3, miFile3);
SetMenuItem(4, miFile4);
SetMenuItem(5, miFile5);
SetMenuItem(6, miFile6);
SetMenuItem(7, miFile7);
SetMenuItem(8, miFile8);
SetMenuItem(9, miFile9);
miSep1.Visible := (miFile0.Visible or miFile1.Visible);

end;
procedure TfrmHexViewer.LoadFile(const FileName: String);
var MS: TMemoryStream;
begin
if FileName <> '' then begin
MS := TMemoryStream.Create;
try
try
MS.LoadFromFile(FileName);

except
rvJeeves.DeleteIndexedValue(FILE_HISTORY, FileName);
raise;

end;
FormatFile(MS, CharsPerLine, reData.Lines);
CurrFile := FileName;
lblFileName.Caption := CurrFile;
rvJeeves.MoveIndexedValueToFront(
FILE_HISTORY, CurrFile);

finally
MS.Free;

end;
end;

end;

➤ Listing 2

56 The Delphi Magazine Issue 52

is in the list, it is moved to the front.
If not, it is added at the front,
jettisoning the last entry if the list
is at its maximum capacity. Several
other routines, including Insert-
IndexedValue and the overloaded
DeleteIndexedValue, are available
for more complicated list item
manipulation.

There are two additional things
left to discuss. The first has to do
with how list values are maintained
in the registry. These are concate-
nated into a string value, with the
various entries delimited by a pre-
defined character string, which, by
default, is a single semicolon (;).
For lists of file names, this should
work just fine. However, if this
delimiter is inappropriate for the

data content, an alternative delim-
iter may be specified in the pub-
lished component property
ListDelim.

Finally, if for some reason the
application needs to suppress
saving of the managed values back
to the registry at program
termination, the public property
SuppressSave may be set to True for
this purpose.

procedure TRegValet.Loaded;
begin
inherited Loaded;
Initialize;
MergeDefaults;
ReadRegistry;

end;
procedure TRegValet.Initialize;
var
I: Integer;
ERI: TRegValetItem;
L: TStringList;

begin
for I := 0 to (FEasyRegItems.Count - 1) do begin
ERI := FEasyRegItems[I];
Names.Add(ERI.Name);
NonIndexedValues.Add(ERI.DefaultValue);
if ERI.MaxOccurs > 1 then begin
L := TStringList.Create;
L.Capacity := ERI.MaxOccurs;
Names.Objects[I] := L;

end;
end;

end;
procedure TRegValet.MergeDefaults;
var
I: Integer;
ERI: TRegValetItem;

begin
for I := 0 to (FEasyRegItems.Count - 1) do begin
ERI := FEasyRegItems[I];
if ERI.DefaultValue <> '' then
Values[ERI.Name] := ERI.DefaultValue;

end;
end;
procedure TRegValet.ReadRegistry;
var
I: Integer;
Reg: TRegistry;
Names: TStringList;

begin
Reg := TRegistry.Create;
try
Reg.RootKey := HKEY_CURRENT_USER;
if not Reg.OpenKeyReadOnly(FPath) then
Exit;

Names := TStringList.Create;
try
Reg.GetValueNames(Names);
for I := 0 to (Names.Count - 1) do
StoreItemFromReg(
Names[I], Reg.ReadString(Names[I]));

finally
Names.Free;

end;
Reg.CloseKey;

finally
Reg.Free;

end;
end;
destructor TRegValet.Destroy;
var
I: Integer;

begin
if not FSuppressSave then
WriteRegistry;

FEasyRegItems.Free;
for I := 0 to (Names.Count - 1) do
if Names.Objects[I] <> nil then
TStringlist(Names.Objects[I]).Free;

Names.Free;
NonIndexedValues.Free;
inherited Destroy;

end;
procedure TRegValet.WriteRegistry;
var
I: Integer;
Reg: TRegistry;
procedure WriteIndexedItems(const Name: String; L:
TStringList);

var
I: Integer;
S: String;

begin
for I := 0 to (L.Count - 1) do
S := S + L[I] + FListDelim;

Reg.WriteString(Name, S);
end;

begin
Reg := TRegistry.Create;
try
Reg.RootKey := HKEY_CURRENT_USER;
if Reg.OpenKey(FPath, False) then
Reg.DeleteKey(FPath);

Reg.OpenKey(FPath, True);
for I := 0 to (Names.Count - 1) do begin
if Names.Objects[I] <> nil then
WriteIndexedItems(
Names[I], TStringList(Names.Objects[I]))

else
Reg.WriteString(Names[I], NonIndexedValues[I]);

end;
Reg.CloseKey;

finally
Reg.Free;

end;
end;
procedure TRegValet.RestoreFormBounds;
var
Left: Integer;
Top: Integer;
Height: Integer;
Width: Integer;
BoundsStr: String;
function NextValue: Integer;
var I: Integer;
begin
Result := -9999;
I := Pos(';', BoundsStr);
if I > 0 then begin
Result := StrToInt(Copy(BoundsStr, 1, (I - 1)));
BoundsStr := Copy(BoundsStr, (I + 1), $7FFF);

end else
// values been manually altered, give up
BoundsStr := '';

end;
begin
if (Owner is TCustomForm) then begin
BoundsStr := Values['RegValetFormBounds'];
if BoundsStr <> '' then begin
try
Left := NextValue;
Top := NextValue;
Width := NextValue;
Height:= NextValue;
if (Left <> -9999) and (Top <> -9999) and
(Width <> -9999) and (Height <> -9999) then
TCustomForm(Owner).SetBounds(
Left, Top, Width, Height);

except
// don't make a big deal out of it

end;
end;

end;
end;
procedure TRegValet.SaveFormBounds;
var
Placement: TWindowPlacement;
R: TRect;

begin
if (Owner is TCustomForm) then begin
Placement.Length := SizeOf(TWindowPlacement);
GetWindowPlacement(
TCustomForm(Owner).Handle,@Placement);

R := Placement.rcNormalPosition;
Values['RegValetFormBounds'] := IntToStr(R.Left) + ';' +

IntToStr(R.Top) + ';' +
IntToStr(R.Right - R.Left) + ';' +
IntToStr(R.Bottom - R.Top) + ';';

end;
end;

➤ Listing 3

December 1999 The Delphi Magazine 57

Wrap It Up For You, Sir?
In the space that remains, I’ll spend
a little time describing the inter-
nals of TRegValet, or at least those
aspects that are off the beaten
track. As you might expect, we’ll
make use of internal Delphi
TRegistry objects to do the actual
registry access dirty work.

To begin with, let’s focus on the
automated registry retrieval and
storage services. Although I don’t
take any steps in the code to pre-
vent this, TRegValet is useful only
when added to an application at
design-time. Creating an instance
dynamically doesn’t make sense
for this kind of component.

Therefore, it’s safe to assume
that the Loaded method will be
called, and it’s here we place the
code to do the initial retrieval. List-
ing 3 contains some of the compo-
nent code being discussed here.
We can also let the registry writing
take place immediately before
destruction in an overridden
Destroy.

The value information is stored
in one or more internal TStringList
objects. The main list, Names, stores
all the item names for both non-list
and list items. A parallel list,
NonIndexedValues, retains the asso-
ciated values for the non-list items.
The Data property of Names is used
for list items, storing a reference to
a TStringList containing the indi-
vidual values of items in the list.
There is one of these string lists for
each list item type.

The form placement services
can be seen in the methods
RestoreFormBounds and SaveForm-
Bounds. Placement values are
stored as four concatenated inte-
gers in a value named RegValet-
FormBounds. In saving these values,
we do not want to use the owner
form’s Top, Left, Width and Height
properties. If the form is maxi-
mized, these will contain the actual
values of the maximized state. If
the client form is terminated in this
state, it will have these values
when next launched (that is it will
appear as maximized), which is
probably not what we want. Even
worse, the maximize/restore
button will display the maximize
graphic. Instead, when saving the

placement data, the component
calls the Windows API routine
GetWindowPlacement to acquire true
normal placement values.

Most of the remaining code in
TRegValet manages the access to
the values. A lot of string list access
takes place, but none of it should
be too mysterious to anyone
familiar with these things.

Before wrapping up, I’ll offer a
few comments about the use of the
TCollection and TCollectionItem
derivatives used in the compo-
nent. Based on the occasional
question I see in the Borland com-
ponent writing newsgroup on this
subject, their proper use for sup-
porting published aggregate prop-
erties is not all that obvious to
those first trying to work with
them. Although there are good
examples to follow in the VCL
code, the Delphi help is not at its
best in this area.

The collection used for Items in
TRegValet was my first use of this
device since Delphi 2, and I was
pleased with how nicely Borland
improved them by solving the
problem of supplying a generic
property editor. It wasn’t too diffi-
cult to examine several VCL imple-
mentations to get the TRegValet-
Items collection to work and to suc-
cessfully summon up the default
collection property editor.

Here’s a simple recipe for writing
a minimal collection and collection
item class that can call upon the
default Delphi collection item
editor. You do need to declare
both a TCollectionItem and a
TCollection derivative class.
Assuming your collection items
have only properties of the form
MyProp: … read FMyProp write
FMyProp (that is, no property read
or write methods), you need no
overridden methods for the
TCollectionItem derivative class.
For completeness, however, you
should supply an Assign method
modelled on the code in
TRegValetItems. The TRegValetItem
class does supply other methods,
but they aren’t required for a
minimal working implementation.

For the TCollection derivative
class, you will need the Create,
GetItem, GetOwner and SetOwner

methods. Note in the code for
TRegValetItems those which are
declared override and those which
are not. The first three of these
methods can be used almost ver-
batim, with only the class types
changed as appropriate. TReg-
ValetItems.SetItem requires only
the inherited SetItem call for a min-
imal working implementation (the
remainder of the code in that
method is specific to this imple-
mentation). Finally, you should
supply an Add method for com-
pleteness. Do these things, and
you should have a working
TCollection of your own.

Valediction
Lessons learned? Well, we all know
it’s advisable to cultivate a per-
sonal friendship with an attorney
or a general building contractor
whenever the opportunity pres-
ents itself. To that list, I think com-
ponent developers ought to add
the profession of graphic artist.

In the ‘Duh!’ category, I discov-
ered that it’s a very good idea when
debugging code that modifies the
registry to not have the registry
editor open at the same time to
monitor your progress.

More seriously, I believe this
exercise illustrates that if you
often use a complex class or com-
ponent and find yourself routinely
using only the same 20% of its
capabilities, it may be an excellent
candidate for wrapping within a
service layer to make your life
easier.

Hmmm... TImageList gives me
fits every time I try to use it, and I’m
never trying to do anything partic-
ularly fancy. Maybe that’s a good
one to build a wrapper layer
around. After all, how hard could
that be?

David Baer is Chief Software
Architect at Spear Technologies
in San Francisco. He’s never
known a real valet or butler, but
he has seen all of the episodes of
Upstairs, Downstairs at least
twice. He can be reached at
dbaer@speartechnologies.com

	Amongst Our Weaponry
	Will That Be All, Sir?
	Proof In The Pudding
	Wrap It Up For You, Sir?
	Valediction

